国际标准期刊号: ISSN:2167-7964

放射学组学杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 研究圣经
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • ICMJE
分享此页面

抽象的

Perovskites and Dye-sensitized solar Cells based printable Photovoltaic Devices

Syed Ghufran Hashmi

Among different gadget plans of perovskite sun powered cells (PSCs), carbon back contact anode based mesoscopic perovskite sun based cells (CPSCs) offer tidy up room free creation, plentiful accessibility of incorporated materials, versatility and motivating soundness in various reenacted and characteristic natural conditions 1-5 . I have been building up this promising sun oriented cell innovation and have been engaged with its scaling up as a team with scholastic and modern accomplices. In my discussion, I will introduce and examine the intriguing outcomes identified with this sunlight based cell innovation around: The substitution of manual penetration of perovskite antecedent ink with robotized inkjet invasion strategy, which altogether improved the photovoltaic exhibition reproducibility. First historically speaking exhibition of extraordinary solidness of these CPSC under serious UV light brightening. An advancement revelation with respect to perovskite gems development in the thermo-muggy climate, which was seen in a computerized mugginess chamber and thus contributed for an extreme improvement (> half) in the sun oriented to-electrical change proficiency just as Our procedure ventures towards scaling up this minimal effort sunlight based cell innovation more than 20 x 20 cm2 FTO-Glass substrates size. Our outcomes give a chance to acknowledge minimal effort PV manufacturing plants as decentralized energy creation units in every EU nation, in opposition to exceptionally costly Si-PV partners.