我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Personalised Dosing of Hyperthermia

Gyula Peter Szigeti, Oliver Szasz and Gabriella Hegyi

Objective: Our objective is to show the superiority of the membrane selection and connected energy dose fixed via personal sensing.

Method: Hyperthermia in oncology involves heating malignant cells and causing thermal damage in an attempt to destroy them. This could be immediate (necrotic) cell-distortion and ignite natural cell elimination, like apoptosis or autophagy.

Two concepts determine the dose of hyperthermia: (1) isothermal tumour heating, homogeneous tumour temperature, which is used for necrosis based cumulative equivalent minutes (CEM), and (2) inhomogeneous heating of the tumour following the heterogeneity of the lesion itself. The personalized dosing used by oncothermia is heterogenic, it selects the membrane rafts of malignant cells that sense temperature on a cellular level targeting the nano-clusters of transmembrane proteins. The method uses the standard specific energy dosing controlled by personal sensing of the treated patient maintaining homeostatic control through gradual step-up heating process.

Results: The nano excitation is thermal (fits to Arrhenius plot), and acts directly on the membrane of malignant cells. The homeostatic physiology reactions do not suppress the effective hyperthermia action with this heating. The stress reactions could be more regulated, the vasocontraction and vasodilatation effects roughly compensate each other. This allows a clear measurability of the dose of the treatment: instead of the temperature based cumulative equivalent minutes (CEM) it uses absorbed energy controlled by the RF-circuit. Due to the small mass of targets the applied power is low, the energy-sink surface cooling is fixed to homeostasis ensuring the accuracy of the energydose and improving the safety of the hyperthermia method.

Conclusion: The nanoselection of malignant cells via oncothermia allows us to return to the dosing “gold standard,” which is also applied in radiotherapy. This energy-based dose is personalised with accurate step-up heating taking the wash-out time and the personal sensing of the patient into account.