我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 宇宙IF
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Phenotypic Identification Of Spinal Cord-Infiltrating CD4+ T Lymphocytes In A Murine Model Of Neuropathic Pain

Draleau KS, Maddula S, Slaiby A, Nutile-McMenemy N, De Leo JA and  Cao L  

Background: Neuropathic pain is one of the most devastating kinds of chronic pain. Neuroinflammation has been shown to contribute to the development of neuropathic pain. We have previously demonstrated that lumbar spinal cord-infiltrating CD4+ T lymphocytes contribute to the maintenance of mechanical hypersensitivity in spinal nerve L5 transection (L5Tx), a murine model of neuropathic pain. Here, we further examined the phenotype of the CD4+ T lymphocytes involved in the maintenance of neuropathic pain-like behavior via intracellular flow cytometric analysis and explored potential interactions between infiltrating CD4+ T lymphocytes and spinal cord glial cells.


Results: We consistently observed significantly higher numbers of T-Bet+ , IFNγ+, TNFα+, and GM-CSF+, but not GATA3+ or IL-4+, lumbar spinal cord-infiltrating CD4+ T lymphocytes in the L5Tx group compared to the sham group at day 7 post-L5Tx. This suggests that the infiltrating CD4+ T lymphocytes expressed a pro-inflammatory type 1 phenotype (Th1). Despite the observation of CD4+ CD40 ligand (CD154)+ T lymphocytes in the lumbar spinal cord post-L5Tx, CD154 knockout (KO) mice did not display significant changes in L5Tx-induced mechanical hypersensitivity, indicating that T lymphocyte-microglial interaction through the CD154-CD40 pathway in not necessary for L5Tx-induced hypersensitivity. In addition, spinal cord astrocytic activation, represented by glial fibillary acidic protein (GFAP) expression, was significantly lower in CD4 KO mice compared to wild type (WT) mice at day 14 post-L5Tx, suggesting the involvement of astrocytes in the pronociceptive effects mediated by infiltrating CD4+ T lymphocytes.

Conclusions: In all, these data indicate that the maintenance of L5Tx-induced neuropathic pain is mostly mediated by Th1 cells in a CD154-independent manner via a mechanism that could involve multiple Th1 cytokines and astrocytic activation.