国际标准期刊号: 2157-7625

生态系统与生态学杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
分享此页面

抽象的

Physical and Chemical Properties of a Sandy Loam Soil Under Irrigated Rice-Wheat Sequence in the Indo-Gangetic Plains of South Asia

Gathala MK, Jat ML, Saharawat YS, Sharma SK, Yadvinder S, Ladha JK

Resource conservation technologies (RCTs) such as zero tillage (ZT), dry direct seeded rice (DSR) and crop residues as mulch are known to increase productivity and profitability of rice-wheat system (RWS) in South Asia. There are, however, few studies on assessing the effect of RCTs on physical and chemical properties of soil under RWS. A field experiment on a sandy loam soil was conducted on RWS for two years at Modipuram, India involving six treatment combinations of three tillage and crop establishment methods in rice, (i) conventional puddled transplanted rice (CT-PTR), (ii) conventional dry tillage followed by direct seeding of rice (CT-DSR), and (iii) zero tillage followed by direct seeding of rice (ZT-DSR), and two green manuring options (with and without intercropping of Sesbania aculeata, -S or +S). In the succeeding wheat, rice residue (RR) was retained in sesbania green manure treatments and it was removed from no sesbania plots. Wheat was direct sown after ZT (DSW) in all the plots. Substituting PTR/ DSW without crop residues with ZT-DSR/DSW plus residue cycling reduced electrical conductivity from 0.146 dS m‒1 to 0.128 dS m‒1 and increased soil organic C from 5.72 g kg-1 to 6.25 g kg-1 in 0-15 cm layer. Similarly, water-stable aggregates (WSAs) >0.25 mm were 28% higher and their mean weight diameter increased by 11.9% in ZT-DSR/ DSW plus residues compared to PTR/DSW without crop residues plots. On average, there was a 23.6% increase in large (4.75-8.00 mm) aggregates and a reduction of 15.8% in finer (0.106‒0.25 mm) aggregates in residue retention treatments over the no-residue treatments. In plots without puddling (ZT-DSR), the infiltration rates were higher (2.97-3.34 mmh-1) than in the CT-PTR (2.41-2.62 mmh-1). Residue retention compared to residue removal not only increased available K contents from 110.5 to 129.2 kg ha-1 but also showed favorable effects on soil matric potential and soil temperature during the wheat season. These beneficial effects on soil quality in just two years after introducing conservation tillage and residue management practices demonstrate potential to improve the long-term productivity and profitability of the RWS. However, the increased rate of infiltration under ZT with residue retention needs new irrigation techniques to minimize the loss of water through percolation during rice season.