国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Predicting Changes of Rainfall Erosivity and Hillslope Erosion across New South Wales, Australia

Xihua Yang*, Bofu Yu, Qinggaozi Zhu and De Li Liu

New South Wales and Australia Capital Territory Regional Climate Modelling (NARCliM) project has produced a suite of 12 regional climate projections for south-east Australia spanning the range of likely future changes in climate. The aim of this study was to model and predict the impacts of climate change on rainfall erosivity and hillslope erosion risk across New South Wales using the NARCliM projections to assist the long-term climate change adaptation and regional planning. We developed a daily rainfall erosivity model for Southeast Australia to calculate monthly and annual rainfall erosivity values from the projected daily rainfall data for the baseline (1990-2009) and future periods (2020-2039 and 2060-2079). We produced monthly and annual hillslope erosion maps for these three periods using the Revised Universal Soil Loss Equation (RUSLE) with spatial interpolation to finer scale (100 m). Automated scripts have been developed in a geographic information system (GIS) to calculate the time-series rainfall erosivity and hillslope erosion so that the processes of large quantity climate projections are realistic, repeatable and portable. The model performance was assessed by comparing with data from Bureau of Meteorology for the baseline period and the overall coefficient of efficiency reached 0.9753 (RMSE 13.2%). Both rainfall erosivity and hillslope erosion risk are predicted to increase about 7% in the near future, and about 19% increase in the far future compared with the baseline period. The change is highly uneven in space and time, with the highest increase occurring in the Far-west in autumn. The rainfall erosivity is generally higher in summer and lower in winter, with about 10 times difference between February (highest) and July (lowest).

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。