国际标准期刊号: ISSN 2472-0518

石油与天然气研究

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Prediction of Solar Radiation using hybrid algorithm of Random Forest and Particle Swarm Optimization

Sunayana Gupta

Due to increased pollution, greenhouse effect and global warming
resulting from power production using fossil fuels, there
is increased penetration of renewable energy sources into the
power production system. Over the last few years, solar radiation
has become a significant means of power production
using solar panels and the concept of microgrids has made
solar power an indispensable source of power in the distribution
system. The power production using solar energy is highly
variable and weather dependent which creates a power imbalance
into the system when it is penetrated without forecasting.
Therefore, solar power prediction plays a critical role in the
proper usage of solar energy while keeping the system stable.
For automating the power system the forecast needs to be very
accurate and thus, it is needed to improve the existing forecasting
techniques. In this study, we have proposed a solar radiation
scheme based on various meteorological factors, including
temperature, humidity, wind speed, and others and used this
data for building a machine learning model for prediction. We
introduced a hybrid model for prediction which optimizes the
parameters of Random Forest using Particle Swarm Optimization
technique. The results show empirically that the hybrid
RF-PSO model significantly improves the prediction accuracy
and reduces the MAE error.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。