国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Projection of Future Changes in Rainfall and Temperature Patterns in Oman

Yassine Charabi

Oman is one of most water-stressed countries in the world. Therefore, keeping water and energy supply and demand in equilibrium in a pressing development is a challenge facing Oman in the years ahead. The threat from the potential impacts of climate change has growing with the recent tropical cyclones that had affected the country and caused loss of life and substantial damage throughout the coastal areas of Oman. The design of an effective climate change strategy requires a deep knowledge about the past, the present climate and also requires an accurate estimation of the plausible change in future climate. This paper presents a rather complete picture about the current (1961-1990) and future (2011-2070) projection of the pattern of rainfall and temperature. For the assessment of the future climate projection over Oman, the 21st century the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) A1B, forcing scenario is used with the climate model of the National Center for Atmospheric Research (NCAR) and the Community Climate System Model (CCSM-3). The A1B scenario clearly shows future minimum temperature increases that are in line with the results shown that minimum temperatures will experience the greatest impact from climate change. The simulation shows that the northern of Oman is expected to face decreasing rainfall in the coming decades. In a region where historic average annual rainfall levels are between 50 and 100 mm for the northern coast area, climate change is expected to lead to between 20 and 40 mm less rainfall by 2040. This is equivalent to a reduction in average annual rainfall of about 40%. With less future rainfall in northern areas, groundwater recharge, surface water flow and water quality are expected to also decrease.