国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Quantitative Assessment of Metabolic Changes in the Developing Brain of C57BL/6 Mice by In Vivo Proton Magnetic Resonance Spectroscopy

Benjamin Schmitt, Ingo vonBoth, Catherine E Amara and Andreas Schulze

Localized proton MRS was used to quantify cerebral metabolite concentrations in the thalamus of mice to assess the variation of major metabolites during brain development. Three sets of C57BL/6 mice were followed in a longitudinal study from a very early phase at post-natal day four (p4) until today 57 (p57). Experiments were conducted in accordance with Canadian animal care guidelines on a 7-Tesla small animal MR system. Specimens were examined under inhalation anesthesia using single-voxel MRS. A cubic volume with edge lengths of 1.9 mm was placed in the thalamus region of animals and point-resolved spectroscopy (PRESS) spectra were acquired with the following parameters (TR/TE/NEX=2500 ms/20 ms/600; Bandwidth=4000 Hz). Absolute metabolite quantification using LCModel was obtained by assigning water signal intensity measured by MRS to water concentrations determined by histobiochemical analysis and interpolation. Optimized anesthesia, immobilization, and careful monitoring led to a survival rate of 100% throughout the study. The brain water content was 84.8, 78.8, and 77.6% at p12, p31, and p66. Variation of metabolites revealed similar patterns for the total of creatine and phosphocreatine (tCr), glutamate and glutamine (Glx), and the total of N-acetyl aspartic compounds (tNAA), with steady increases from p4 to reaching a plateau after p21. The total of Cholinecontaining compounds (tCho) and myo-inositol (Ins) had high concentrations at early exam points, decreased to minima between p14 and p19, and increased to adult levels thereafter. Taurine (Tau) had highest levels at p4, decreased persistently but fast in the early development and slow in the later stages of brain development. Our results indicate that biological variance must be considered if results from studies on mouse models of pathologies are compared with results from healthy controls during development. This aspect seems to be especially important between p10 and p21. Due to the high temporal resolution used at early time points in our study and the inclusion of multiple groups of animals at time points, our data contribute important aspects to the existing literature about mouse brain development.