国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Race for the Surface: Simultaneous Growth of Bacteria and Mammalian Cells on DNA Polyelectrolyte Multilayer Coatings

Guruprakash Subbiahdoss, Erik Reimhult

We introduce a dip-and-rinse, DNA-based coating to reduce the risk of bacterial infection and promote tissue tegration of implants, applicable to most common implant surfaces. Medical implants are used to restore the function of failed body parts, but their application is limited by implant-associated infections (IAI). IAI yield high mortality because bacteria that colonize implant surfaces form a biofilm, which protects them against immune cells and antibiotics1. In most cases, the final outcome of IAI is the removal of the infected implant from the body [1]. Bacterial contamination of implants frequently happens during the surgery (peri-operative contamination). Whether this contamination develops into an infection or not depends mainly on the outcome of the so-called ‘race for the surface’ between successful tissue integration of the implant and colonization of the surface by bacteria2. Bacterial attachment to the implant surface is the initial step of biofilm formation, and therefore a preventative strategy is to use antiadhesive coatings. However, truly antiadhesive coatings not only decrease bacterial colonization but also host tissue integration. The ultimate solution is therefore multifunctional coatings that are non-adhesive to microbes and simultaneously support tissue integration [2]. We hypothesized that polyanionic DNA could prevent bacterial adhesion and biofilm formation. In our recent study, we produced DNA coatings via the facile layer-by-layer technique alternating DNA with the biocompatible biopolymer chitosan. We showed that the LbL DNA coatings significantly reduced the adhesion of Staphylococcus and Pseudomonas to both PMMA and titanium implant surfaces. In addition, our DNA coatings demonstrated no cytotoxicity when cultured with SaOS-2 cells3 (Figure 1). Here, we continue to investigate the simultaneous growth of bacteria and mammalian cells on the DNA polyelectrolyte multilayer coated implant surface based on the race for the surface [3].