国际标准期刊号: ISSN:2167-7964

放射学组学杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 研究圣经
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • ICMJE
分享此页面

抽象的

Radiology in the Era of COVID-19: A Systematic Exploration of Detection and Diagnosis Modalities

Angeliki Ailianou*

The COVID-19 pandemic has underscored the significance of radiology in the early detection and precise diagnosis of the disease. This research article presents a systematic exploration of various radiological modalities employed in the context of COVID-19, examining their efficacy, challenges, and emerging trends. From traditional chest imaging to cutting-edge artificial intelligence (AI) applications, this study aims to provide a comprehensive overview of the evolving landscape of radiological approaches during the ongoing global health crisis. According to the findings, deep learning-based models have an extraordinary capacity to offer an accurate and efficient system for the detection and diagnosis of COVID-19, the use of which in the processing of modalities would lead to a significant increase in sensitivity and specificity values.

The application of deep learning in the field of COVID-19 radiologic image processing reduces false-positive and negative errors in the detection and diagnosis of this disease and offers a unique opportunity to provide fast, cheap, and safe diagnostic services to patients.