我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Regenerative potential of M2-polarized anti-inflammatory macrophages in the context of inflammation-based neurodegeneration in a model of APP?+ Alzheimer disease

Fred Fändrich

Lately, there is accumulating evidence evidence for silent inflammation as a major contributor to Alzheimer Disease (AD), associated as one potential underlying pathomechanism. This includes innate immunity, specifically M1-polarised inflammatory macrophages which trespass the blood brain barrier.  Using wild-type and amyloid precursor protein β protein transduced mice we compared the cognitive abilities of four different experimental groups (n=8). 1. Wild type mice (not transduced with APPβ), 2. APPβ+ animals treated with saline, 3. APPβ+ mice treated with radiated (7 gy) REMs (M2-polarized anti-inflammatory macrophages), and 4. APPβ+ mice treated with non-radiated REMs. REMs (radiated and non-radiated) were injected intravenously into APPβ+ animals at the age of 2 months. Cognitive capacity was tested using a water-maze and labyrinth test model, at the age of two months (young mice) and at 6 months (old mice) of age. We found a significant reduced capacity of learning and orientation capacities in all four groups when comparing young and old mice. There was a significant cognitive decline when comparing wild-type animals with APPβ+ animals treated with saline (p<0.01) or radiated REMs (p<0.01). Treatment with non-radiated REMs prevented the development of AD in all 8 animals tested whose cognitive functional scores did not differ significantly from wild-type animals. In a pilot observation n=7 Alzheimer patients were treated with autologous REM´s generated from patient’s monocytes. Based on MMSE (MINI-Mental-State-Examination) n=4 patients had an improvement of the cognitive activity. Our results indicate that the anti-inflammatory properties of regenerative M2-polarized REM macrophages is able to prevent astrocyte and microglial activation in APPβ+ animals and underscores silent inflammatory-based neuronal damage as a major pathomechanism in this animal model. Additionally, first clinical results show that this cellular therapy has a positive effect on the cognitive activity of Alzheimer patients.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。