国际标准期刊号: 2155-9910

海洋科学:研究与开发

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
分享此页面

抽象的

Seismic Stratigraphy and Development of Deep Fluvial Channel Incisions in the Middle Miocene Deposits, Ewan and Oloye Fields, Northwestern Niger Delta, Nigeria

Durogbitan AA

Seismic interpretation of depth converted three-dimensional seismic survey from Ewan and Oloye fields; onshore northwestern Niger Delta has helped in the identification of incised valleys (up to 350 m) deep. This study evaluated their morphologies, evolution and the local controls that influence their development. The seismic reflections of the incised valleys are characterized by low-moderate amplitude, variable internal reflections, aggradational, chaotic and progradational-sigmoid reflection patterns overlying by parallel to sub-parallel reflections configuration. The seismic reflection characteristics are probably due to variable sedimentation processes within the valleys which were affected by mass wasting. Asymmetry morphology of the valleys suggests fluvial origin while low sinuosity of the channel may indicate high gradient and high discharge. The occurrence of incised valleys landward of the shelf edge suggests and partially reflects underlying structural control. This might be caused by uplift due to shale diapirism (shelf instability). The magnitude of incision is difficult to explain in terms of sea-level fall alone because ecstaticallydriven sea level variations during the Miocene are generally reported to be less than 100 m. This suggests that the character of fluvial incisions development and depositional facies preserved within the study area is locally controlled by growth faults, rapid relative sea level changes, basin physiography (shelf edge), shelf instability, variation in sediment input, slope collapse (mass flow depositional processes and downward cutting by downslope sediment flow). The incised valleys within the study area probably serve as conduits for sediment transport to the deep water. Seismic delineation of the distribution and morphology of these incised valleys may also provide critical input for reservoir modeling and volumetric analysis.