国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Simultaneous Activation of Nrf2, Elevation of Antioxidants and Reduction in Glutamate Level: An Essential Strategy for Prevention and Improved Management of Neurodegenerative Diseases

Kedar N Prasad

Despite extensive research on the biochemical and genetic defects in Alzhemier’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and post-traumatic stress disorders (PTSDs), there are no effective preventive strategies; and the treatment methods remain unsatisfactory. The reviews of these studies suggested that enhanced production of free radicals, persistence inflammation were one of the earliest events in the development and progression of these diseases. Excess release of glutamate occurred in HD and PTSD earlier than in AD and PD. Glutamate together with excess free radicals and pro-inflammatory cytokines participate in the progression of these diseases. Thus, reducing simultaneously these biochemical defects may prevent, and together with standard therapy, enhance the care of neurodegenerative diseases. Previous studies using primarily individual antioxidants produced variable outcomes ranging from transient benefits in the early phase of the disease to no effect. In order to optimally attenuate oxidative stress, persistence inflammation and glutamate, it is necessary to simultaneously increase the cellular levels of cytoprotective enzymes including antioxidant enzymes, antioxidant compounds that are derived from the diet and made in the body and reduce glutamate level. Enhancement of antioxidant compounds and attenuation of glutamate level are achieved by supplementation with antioxidants and B-vitamins; however, increasing the cellular levels of antioxidant enzymes needs an activation of Nr2 that is ROS-dependent and ROSindependent. In neurodegenerative diseases, Nrf2 is not activated by ROS; however, antioxidants activate ROSindependent Nrf2. This commentary briefly describes the genetic and epigenetic factors that regulate the activation of Nrf2, and proposes a micronutrient mixture that may simultaneously activate ROS-independent Nrf2, increase the cellular levels of antioxidants, and decrease the release and toxicity of glutamate. This micronutrient mixture may simultaneously and optimally reduce oxidative, chronic inflammation and glutamate, and thus, may prevent and together with standard therapy, enhance the care of these neurodegenerative diseases.