国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Spatial and Temporal Variation of Impacts of Climate Change on the Hydrometeorology of Indus River Basin Using RCPs Scenarios, South East Asia

Gebre SL and Fulco Ludwig

In this study we assessed the spatio temporal impacts of climate change on the hydrometeorology of Indus River basin. A 0.5 by 0.5 degree resolution data of Coupled Model Intercomparison Phase5 (CMIP5) global climate models (GCMs) output of precipitation and temperature (maximum and minimum) and VIC (Vertical Infiltration Capacity- Macroscale hydrological model) simulation results of evaporation and total runoff at the out let of the Arabian peninsula for 2030`s (2035-2064) and 2070`s (2071-2100) under (Representative Concentration Pathway) RCP 4.5 and RCP 8.5 emissions scenarios used. Arc GIS 10.2 extension of ordinary kriging Geostatistical interpolation techniques applied for spatial analysis of precipitation, temperature (maximum and minimum) and evaporation for the River basin. Future projection results as compared to the base period (1971-2005) showed that the, average multimodal monthly precipitation decreases during winter and, spring months and increases during summer months, ranging in between -25% and +43%. Average seasonal spatial precipitation changes resulted various ranges of precipitation distribution for 2070`s of RCP 4.5, average seasonal precipitation decreases in the mid part of the basin up to -20%. Average temperature increase for both future periods (2030`s and 2070`s) and RCPs (RCP 4.5 and RCP 8.5) emission scenarios, maximum temperature change observed in the Himalayas Mountains. All GCMs except MPI projected increase of future average annual evaporation. Average Multimodal GCMs projection results showed that the, average monthly runoff increases more during summer than winter. The increase of runoff at the downstream flow is as a result of snow and glacial melt at the high elevation regions of the Indus River basin. The increase of runoff flow probably has positive impacts in meeting the water requirement of small scale irrigation schemes. Moreover, water can be stored in a reservoir during summer season and distributed to arid areas of the basin. Due to the increased amount of flow during summer, there may be high chance of flooding in plain areas of the basin, therefore a precaution measure have to be taken in order to minimize the possible risks of flooding on agricultural and human welfare of the society.