我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • 学术钥匙
  • 期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Strategies for Developing Genetically Engineered Plants for Viral Resistance-A Review

Senpon Ngomle

Plant viruses cause significant agricultural losses all around the globe. Cultural approaches and applications of biocide against arthropod, nematode and plasmodiophorid vectors had little efficacy in minimizing the effects of herbal viruses. The utmost efficient and cost effective method of reducing plant viral infections is to plant impervious farmers. Natural several causes of the opposition have been widely used in conventional breeding to generate virus resistant plants. Non-traditional approaches have also been employed effectively to give virus resistance by transferring virus derived genes into susceptible plants, containing viral coat protein, replicas, expression protein, nonsense interfering RNA, non-coding RNA, protease RNA viruses are not the only kind of genes since ribosome inactivating proteins, protease inhibitors, double stranded RNase and RNA modifying enzymes also fall under this category.

Additionally, scFvs and effectively employed in plant virus resistance engineering. There have just a few GE crops with viral authorized resistance for farming and none have been now accessible in underdeveloped nations. However, many commercially significant GEVR crops converted using viral genes are gaining popularity in underdeveloped countries. The main challenges issue with GEVR agricultural production and deregulation in developing countries generally include socioeconomic in nature and are connected to biosafety regimes and protections for intellectual property, the expense to create GE crops and resistance from members of non-governmental organizations. Proposals for resolving these issues satisfactorily, apparently leading to field testing and liberalization of GEVR plantation standards in emerging nations are provided.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。