开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Xuanyu Tao, Li Yan, Zhengsheng Yu, Mengxin Zhao, Xiaowei Zhang, Pu Liu and Xiangkai Li
Waste Cooking Oil (WCO) is classified as waste material and harmful to the environment and human health. Searching a cost-effective and eco-friendly approach to recycle WCO is urgent in China. In this study, three soil samples were collected and their WCO degradation ability was investigated. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed that a soil sample collected near a restaurant disposal site was able to convert WCO to fatty-acid-derived fuels after 90 days’ anaerobic fermentation. The calorific value of the fermentation products increased by 17.2%. 16S meta sequencing data showed that this microbial community has a unique structure. Proteobacteria was the most abundant microbial phylum representing 60.4298% of the whole community. The percentage was almost three times higher than that in the other two microbial communities which cannot degrade WCO. Magnetospirillum, a genus of Proteobacteria, was much more abundant than the other genera in this phylum, accounting for 11.2% of the total population. The unusual community composition might correlate with its ability of WCO degradation and Proteobacteria phylum and Magnetospirillum genus may play key roles in the decomposition of WCO. To our knowledge, this is the first finding that a microbial community is able to convert WCO to fatty-acid-derived fuels, which might provide an alternative approach of reprocessing WCO.