国际标准期刊号: E-2314-7326
P-2314-7334

神经传染病

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 出租车直达
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • ICMJE
分享此页面

抽象的

Structural Protein and Growth Factor Expression Patterns Leads to Extracellular Matrix Remodeling and Attendant Cerebral Vasculitis in Bacterial Meningitis

Vivig Shantha Kumar, Vignarth Shantha Kumar

Cerebrovascular complications of bacterial meningitis account for an overwhelmingly high incidence of post infectious neurological decline amongst survivors. From several pieces of histological descriptions, angiographic models and radiographic studies, it is clear that the cerebral vessels are distinctively involved during the course of bacterial meningitis. Furthermore, it is evident that dynamic vessel wall changes take place during the course of infection with an early transient vasospasm and a more persistent vasculitis through angiographic studies documenting time course variations of cerebral blood flow. Even with this, our understanding of the deleterious vessel wall modifications predisposing to vasculitis in bacterial meningitis remains to be more closely elucidated. Interestingly, after analyzing a temporal relationship between subarachnoid space inflammation and cerebral vasculopathy in bacterial meningitis, it becomes somewhat definite that the development of cerebral vasculitis may originate from inflammatory byproducts synthesized in the subarachnoid space. Following synthesis and release of these soluble growth factors, they are relayed into surrounding penetrating cerebral vessels, where they subsequently gain access to specific components of the extracellular matrix to initiate the progressive process of vessel wall remodeling, eventually culminating in the development of ischemic consequences. With this, in this review, we specifically sought to understand the significance of disturbed expression of specific structural proteins and growth factors in the subarachnoid space and their potential role in triggering vasculitic adaptations of the cerebral vasculature.