国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Sustainable Method for Recycling Nd from Old Electronic Parts with Element-specific Sorting that Makes Hydrometallurgy Easier

Delogado VA

Neodymium is a pricey strategic metal that is absolutely necessary for our society; the most important issue is to ensure its availability and ensure its sustainable use. We are far from this, however, as less than one percent of it is recycled at the moment. Despite their 12 percent share of the Nd market, recycling small Nd-containing ceramicbased components has received little attention despite some work being done to recycle electrical engine's large Nd-based magnet alloys. A method for economically viable Nd recycling from such electronic waste components is demonstrated in this paper. We handled the issue of high Nd weakening in complex e-squanders through the upstream arrangement of synchronous dismantling, machine vision, and multi-energy X-beam transmission arranging (first-of-its-sort), trailed by exact beneficiation in righteousness of the distinction in attraction, thickness,and break sturdiness. The concentrates that are produced are mostly dielectric ceramics (BaO-Nd2O3-TiO2) with 38.3% by weight of Nd. Despite the fact that earthenware production are hard-headed by and large, Nd can be just filtered in concentrated HNO3 from these dielectrics with high selectivity under upgraded conditions. Oxalate precipitation can then be used to recover Nd, and 60 percent of HNO3 can be regenerated. Through theoretical calculations, the underlying kinetics, thermodynamics, and bonding nature of the leaching were investigated to expand on the mechanism. Nd2O3 of commercial grade (> 99.6%) is produced with an overall efficiency of 91.1%.All the more critically, the reusing course is assessed beneficial in no less than four years in light of moderate edges. A promising approach to recovering rarely recycled strategic metals in the direction of a closed-loop design is presented in this work.