国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Temperature and Precipitation Climatology Assessment over South Asia using the Regional Climate Model (RegCM4.3): An Evaluation of the Model Performance

Mujtaba Hassan, Du Penfei, Waheed Iqbal, Wang Can, Fang Wei and Wulong Ba

Climate modeling is a significant tool to reproduce the observed features of present climate changes and can provide reliable estimations for future climate changes at global and regional levels. In the present study we use latest version of International Center for Theoretical Physics (ICTP) regional climate model (RegCM4.3) to examine its ability by analyzing the European Community-Hamburg atmospheric model (ECHAM5) and the European Centre for Medium-Range Weather Forecast (ECMWF) 40 years reanalysis data (ERA-40) over South Asia. Seasonal mean climatology and annual cycle are compared with different observation based data sets and also with the reanalysis and driving GCM. Two experiments are conducted for present day simulation (1971-2000) by using ERA-40 reanalysis and ECHAM5 GCM to provide the initial and lateral boundary conditions. In spite of complex topography of the domain RegCM4.3 shows an improved performance in various aspects as compared to the earlier applications of this model over South Asia. Near surface air temperature are reproduced well over the most part of the domain. Indian monsoon precipitation patterns are better captured by RegCM4.3 as compared to the driving data set of ECHAM5 and ERA40. Simulation results show that RegCM4.3 has cold bias in winter and summer over the foothills of the Hindu-Kush-Himalaya (HKH) region. Simulation with ERA40 and ECHAM5 overestimated the seasonal mean precipitation over some part of the domain which requires further improvement in the physical parameterization scheme of RegCM4.3.