国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Temporal climate trend of Ping Basin of Thailand and implications for Mekong Region

Abbadi Girmay Reda, Nitin K. Tripathi, Peeyush Soni, Taravudh Tipdecho, and Aparna Phalke

The Ping Basin is the major basin in Northern Thailand with drainage area of 35,000 km2. Climate trend of Ping Basin for current period (1961-2010) and projected trend (2011-2059) are discussed for maximum and minimum temperature and precipitation. Current trend was analyzed from actual representative three stations data and averaging at basin level. Measures of the variability analysis included temporal variability, trend, anomaly, coefficient of variation (C.V) and index. The basin showed high temporal climate variability throughout the study period (1961-2059). The current period showed significant positive trend of minimum temperature and negative trend of maximum temperature while no significant trend in precipitation with high variability, fluctuation and inconsistency. Minimum temperature of Ping increased at a faster rate than that of Thailand. In the first two decades (1961-80), maximum temperature increased by 1.5°C and decreased by 1°C in the later decades (1981-2010) while minimum temperature dropped by 2.3°C in the period of 1961-80 and increased by 1.53°C in the years 1981-2010 as compared to the long term 50 years normal temperature of 1961-2010. Intercomparison of 5 GCMs at 50 km spatial scale in projecting future trends indicated that all the five models show similar prediction of future mean temperature while ECHAM5 had the most robust prediction power of rainfall. Projected trend (2011-2059) from ECHAM4 PRECIS RCM debiased, calibrated and validated at finer 20 km spatial scale shows precipitation will increase as compared to current intensity and minimum temperature will significantly increase at a higher rate (R2=0.76 at the rate of 0.042°C\annum) than maximum temperature (R2=0.5 at the rate of 0.038°C\annum). Our findings are consistent with projections for Mekong Basin.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。