我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

The Breakdown of Veterinary Drugs is Influenced by the Redox Potentials of Anaerobic Pig Slurry

Susanne Jones

The fate of veterinary medications in the environment has drawn increasing attention since they are routinely employed in intensive livestock husbandry. Even though this knowledge is crucial for a more thorough assessment of environmental risk, pig slurry qualities have rarely been examined in research studies in relation to the fate of veterinary medications. The amount of antibiotics added to the soil and the results of the risk assessment may change depending on how quickly manure degrades. The purpose of this study was to find out if the degradation rates of acetyl-salicylic acid, ceftiofur, florfenicol, oxytetracycline, sulfamethoxazole, and tylosin were influenced by commonly reported redox potentials. Redox potentials of 100 mV (reduced), 250 mV (anaerobic), and 400 mV were used (very anaerobic). There was found to be a compound-specific connection. The degradation of ceftiofur, florfenicol, oxytetracycline, and sulfamethoxazole was inhibited under reduced conditions over that of very anaerobic conditions, with the corresponding DT50 values being 0.7-1.84 h, 1.35-3.61 h, 22.2-49.8 h, 131-211 h, and 35.4-94 h. This was a compound-specific relationship that was Tylosin, however, was discovered to decay more quickly under decreased circumstances than under extremely anaerobic (DT50 6.88–19.4 h). In order to improve the environmental risk assessment of veterinary medicines, the research presented here shows the significance of redox potential on degradation rates and suggests that redox control needs to be strict and standardized.