我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

The Development of Cellular Oxidative Injury due to Ongoing Diabetes Requirements Implant of the Pancreas

Tarunkanti Mondal

There is a lot of evidence that hyperglycaemia-induced cellular oxidative stress is a major factor in the onset and progression of chronic diabetic lesions. In this study, we determined whether pancreas transplantation prevented the imbalance between the lungs of diabetic rats' antioxidant defences and the excessive production of reactive oxygen species. After four and twelve weeks of follow-up, each group was further divided into two subgroups of ten rats each. These subgroups were then killed. All rats had their plasma glucose, glycosylated hemoglobin, and insulin levels measured. In the pulmonary tissue of all of the rats, the concentrations of lipid hydro peroxide as well as the activities of superoxide dismutase, catalase, and glutathione peroxidase enzymes were measured. The DC rodents showed raised blood glucose and glycosylated hemoglobin levels, with insulin blood levels altogether lower than the NC rodents. They likewise showed altogether expanded LPO focuses in the lungs following 4 and 12 weeks of followup. SOD, CAT, and GSH-Px antioxidant activities, on the other hand, decreased significantly during these times 12 weeks after diabetes induction. Effective PT adjusted all clinical and metabolic changes in the diabetic rodents, with supported normoglycemia all through the review. Four weeks after PT, low SOD, CAT, and GSH-Px antioxidant activities and excessive lung LPO production were back to normal. In diabetic rats, PT can reduce oxidative stress in the pulmonary tissue. It may serve as the foundation for preventing lungs with chronic diabetic lesions.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。