国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

The effect of Atlantic Nino on the Summer Monsoon Rainfall Anomalies in Sri Lanka

Malinda Millangoda

Sri Lankan climate is influenced by temperature patterns in the Indian Ocean as well as the Pacific Ocean. El-Niño Southern Oscillation (ENSO) is one of the global scale climate phenomena that have significant influence on the yearto- year variability of the monsoon over South-Asia. There have been numerous studies which explores the connection between the Indian Summer Monsoon (ISM) rainfall and the Atlantic Niño. However, the teleconnections of the Atlantic Ocean with the rainfall of Sri Lanka are not extensively studied. Considering the rainfall over Sri Lanka, Atlantic Niño and the South-west monsoon (summer monsoon) peaks during the June-July-August (JJA) period. Therefore, in this study the connections of the Atlantic Ocean, specifically the Atlantic Niño with regards to the ATL3 region rainfall during June-July-August (JJA) periods were considered. It was found that the JJA rainfall anomaly had significant correlations with the SSTA of ATL3 region (Atlantic Niño/Niña). In this study it was revealed that the Atlantic Niño has a significant positive correlation with rainfall over Sri Lanka with the Niño (positive phase) resulting in increasing JJA seasonal rainfalls over Sri Lanka while the Niña (negative phase) reduces the rainfall. Then the potential mechanism of how the Atlantic Niño/Niña is linked to the seasonal rainfall JJA was studied. In doing so, Relative Humidity (RH) at lower levels of the atmosphere, Outgoing Longwave Radiation (OLR), Divergence at different levels, Zonal and Meridional wind components at different levels of the atmosphere, Moisture Flux and Moisture Flux Divergence, streamline analysis were extensively studied. In this analysis, it was revealed that low pressure areas associated with the SSTA anomaly over the Tropical Atlantic Ocean during the Niño phase has drawn the zonal winds at lower-levels of the atmosphere towards the Atlantic Ocean which has strengthened the latter part of the cross-equatorial flow prevalent during the south-west monsoon period. Cross-equatorial flow plays a vital role during the south-west monsoon period. In addition to that, the extra water vapor that is evaporated during the Niño phase is then transported over the North African continent to the Indian Ocean by the strong westerly zonal wind anomaly prevalent over the Atlantic Ocean. This moisture is then fed to the westerly flowing upper part of the cross-equatorial flow which will further enhance the rainfall over south-western part of Sri Lanka. This wind formation also has resulted in keeping the Inter Tropical Convergence Zone (ITCZ) or the Monsoon Trough (MT) over Sri Lanka for an extended period.