我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • 学术钥匙
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • 卡迪夫大学
分享此页面

抽象的

The Effects of Bioaccumulation of Heavy Metals on Fish Fin Over Two Years

Nwabunike MO

The study analyzed the effects of bioaccumulation of heavy metals on fish fin. The objectives of the study were to analyze the overall effects of bioaccumulation of heavy metals in fish tissue (fin) over two years (Clarias albopunctatus), and to make necessary recommendations for the general improvement of fish management in the study area. Multimesh gillnets were used to monitor the abundance and structure of the fish fauna. Stratified random sampling was carried out in each water body. The fishes were caught, identified, counted, graded, measured and weighed according to species. The species for chemical and histological analysis were taken immediately after weighing to the laboratory. Concentration of metals were studied in fish in the tissue lying between the lateral lines and the fins, since high concentrations of metals do not imply that the metal have a toxic effect. It was observed that Fish fin had reduced bioaccumulation of cadmium than the blood and liver. This ranged in the running effluent areas in 2011/2012 from 0.8- 1.4 and 0.6-1.02 ppm in 2012/2013 with the two controls ranging between 0.2-0.4 ppm. Also, Nickel bioaccumulation in catfish fin had an ascending bioaccumulation during the two years with the range of 6.0-9.8 and control 1 has 3.1- 4.2. Control 2 ranged from 1.0-1.5, showing that fishes in pond water had little or no nickel bioaccumulation. It was further observed that Mercury bioaccumulation in fish fin ranged from 0.4-0.6 ppm and 0.7-1.2 ppm in Akpara Dam and Enyigba fishes respectively. Enyigba ranged 0.8 -1.2 ppm which was the highest. Ebonyi River ranged between 0.03- 0.08 which was control 1 and pond water which was control 2 had no record of bioaccumulation. Again, Chromium had bioaccumulation in fish which ranged from 15-20 ppm in Akpara and Ebonyi River and had Enyigba fish fin at the ranges of 23-29 ppm with the Ebonyi River fish fin having 9-11 ppm bioaccumulation and pond water having no record of bioaccumulation in its fish fin. Subsequently, the variation of lead and its bioaccumulation in the three running sites ranged from 0.5-1.3 ppm. The control which was Ebonyi River had a range of 0.2-0.4 ppm. The pond water had no bioaccumulation in its fish fin. Hence, bioaccumulation in fish fin increases with increasing age. The research also showed that Arsenic had a bioaccumulation range of 0.5-0.7 to 0.8-1.1 ppm in the three running sites but with the first control which was Ebonyi River fish fin registering 0.2-0.5 ppm in 2011 and 0.4-0.5 ppm in 2012 in the second control having no bioaccumulation or less than 0.1 arsenic concentration. Based on the findings of this study, the following recommendations were made: There should be periodic monitoring of the heavy metals concentration in both the fishes and river system to ensure continuous safety of people in the area. Safe disposal of domestic wastes and control of industrial effluents should be practical and where possible recycled to avoid these metals and other contaminants from going into the environment. There should be further studies on the concentration of heavy metals in other fish tissues (brain, liver, kidney, intestine, and heart) and species. Neutralization of effluent water is recommended as a modern treatment practice such as lime precipitation of effluent water.