我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

The generation of anti-tumour bystander killing by genetically engineered ovarian tumour cells and the influence o -irradiation: implications for clinical use as Cancer Vaccines.

DR Jehad Zweiri

Cellular based therapeutic approaches for cancer rely on careful consideration of finding the optimal cell to execute the cellular goal of cancer treatment. Cell lines and primary cell cultures have been used in some studies to compare the in vitro and in vivo efficacy of autologous vs -irradiation on a range of tumor cell lines in conjunction with suicide gene therapy of cancer. To determine the efficacy of this modality, a series of in vitro and in vivo experiments were conducted using genetically modified and unmodified tumor cell lines. Following co-culture of HSV-TK modified tumor cells and unmodified tumor cells both in vitro and in vivo we observed that the PA-STK ovarian tumor cells -irradiation, completely abolishing their ability to induce bystander killing of unmodified tumor cells. In contrast, TK-modified human and mouse mesothelioma cells were found to retain their in vitro and in vivo bystander killing effect -irradiation. Characterisation of tumor cell death showed that PA- -irradiation. These results suggest that PA-STK cells are not suitable for clinical application of suicide gene therapy of cancer, as l -irradiation (100Gy) interferes with their bystander killing activity. However, the human mesothelioma cell line CRL-5830-TK retained its bystander killing potential after -irradiation (100Gy). CRL-5830 may therefore be a suitable vehicle for HSV-TK suicide gene therapy. This study highlights the diversity among tumor cell lines and the careful considerations needed to find the optimal tumor cell line for this type of whole cell tumour vaccination.