国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

The Inflammatory Cytokines in the Pathogenesis of Parkinson's Disease

Hanaa L Sadek, Sayedah F Almohari and Waleed M Renno

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the degeneration of dopamine neurons in the substantia nigra pars compacta. Research and clinical data suggest that the etiology of PD is multifactorial. However, recent studies indicate that neuroinflammation and associated infiltration of inflammatory cells, chemokines and cytokines may play a critical role in the pathogenesis of PD. Cumulative evidences suggest that cytokines activation and neuroinflammation may have deleterious effects on the dopaminergic system and are key factors contributing to disease progression. The levels of proinflammatory cytokines in peripheral blood tend to be higher in PD patients. Studies of brains from PD patients and animal models have provided evidence for neuroinflammation, including activation of microglia, release of IFN-γ and TNF-α and infiltration of the midbrain by CD4 and CD8 lymphocytes. However, the influence of proinflammatory factors on the risk of PD remains unclear. In this review, we attempt to discuss the most recent publications on the role of inflammatory factors in PD. One hypothesis concerning the cause of degeneration of the nigrostriatal dopaminergic neurons is that PD is triggered by programmed cell death (apoptosis) due to increased levels of cytokines, apoptosis-related proteins and/or to decreased levels of neurotrophins such as brain-derived neurotrophic factor. Astrocytes stimulated by neuro-derived α-synuclein synthesize and release a number of proinflammatory cytokines and chemokines that in turn recruit and activate microglia. Thus, the effects of small amounts of neuronal α-synuclein protein can be amplified and sustained, thereby establishing an inflammatory microenvironment and further damaging neurons. This neuroprotection was shown to be associated with the anti-inflammatory properties of drugs that act as PPAR-γ agonists. In addition, these studies suggest that molecules that prevent inflammation and apoptosis may be useful in preventing or treating PD. In conclusion, protection of neurons against inflammation may help in slowing the neuronal degeneration in PD.