国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

The Potential Effect of Caffeine and Nicotine Co-administration against Aluminum-induced Alzheimer's disease in Rats

Azza A Ali, Hebatalla I Ahmed, Hanan A Abd El-Samea and Ebtehal El-Demerdash

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized clinically by cognitive decline and memory loss. Caffeine and nicotine are the most commonly co-used psycho stimulants. Caffeine is one of the major contributors to the dietary antioxidants which prevent oxidative damage and may reduce the risk of chronic neurodegenerative diseases. Nicotine has the ability to decrease level of reactive oxygen species (ROS) in the hippocampus and suggested to attenuate the impairment of memory associated with AD. The study aimed to evaluate the influence of caffeine and nicotine co-administration against aluminium-induced neurotoxicity that mimics AD in rats. Five groups of rats were used and received daily for five weeks: Saline for control, aluminium chloride (AlCl3) (70 mg/kg, IP) for AD mimic group, while treated groups received together with AlCl3, either Caffeine (5mg/kg, IP), Nicotine (1 mg/kg, SC) or their combination. Three behavioral experiments were performed: Forced Swimming Test (FST), Morris Water Maze (MWM) task and Conditioned-Avoidance and Learning (CAL) test. Histo pathological changes in the brain and biochemical changes in Acetyl cholinesterase (AchE) as well as oxidative parameters; malon dialdehyde (MDA), superoxide dismutase (SOD), total anti oxidane capacity (TAC) were also evaluated for all groups. Results of the behavioral tests showed that caffeine and nicotine co-administration had more pronounced protecting effect from learning and memory impairment induced by AlCl3 than each one alone. Caffeine and nicotine co-administration also prevent neuronal degeneration in the hippocampus and the eosinophilic plagues in the striatum induced by AlCl3 while nicotine alone still showed mild gliosis in striatum. The marked protection of caffeine and nicotine co-administration confirmed also by the significant increase in TAC and SOD and decrease in MDA and AchE in brain tissue. In conclusion, co-administration of caffeine and nicotine can reduce the risk of neuronal degeneration in the hippocampus and attenuate the impairment of learning and memory associated with AD.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。