国际标准期刊号: 2167-065X

临床药理学与生物药剂学

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

The Role of ABC Efflux Transporter in Treatment of Pharmaco-Resistant Schizophrenia: A Review Article

Alemayehu D, Melisie G, Taye K and Tadesse E

A large percentage of schizophrenic patients respond poorly to antipsychotic treatment. This could be explained by inefficient drug transport across the blood-brain barrier due to ABC efflux transporter, in particular, P-glycoprotein, mediated efflux. P-glycoprotein (P-gp) activity and expression in the blood-brain barrier can be affected by genetics (polymorphism), inflammation and pharmacotherapy. The level of expression of P-gp at BBB is thought to be one of the factors contributing for pharmaco-resistant schizophrenia. Despite the differences in the experimental set-up that partly explain the controversies regarding the interaction between P-gp and antipsychotics, it is feasible to say that the majority of the antipsychotics have shown (mostly weak) affinity as a P-gp substrate and that most have a weak inhibitory effect on P-gp in vitro. The three major Single Nucleotide Polymorphisms (SNPs) in protein coding region at C3435T, G2677T, and C1236T of ABCB1 at BBB have been associated with efflux pump efficiency and with predicting changes in the function of P-gp that determines the inter-cerebral concentration and therapeutic response in human studies to anti-psychotics unlike serum concentration of these agents. The effects of ABCB1 polymorphisms and their significance remain unclear due to contradictory and inconsistent study results, and so far they have not been able to incontestably explain differences in the pharmacokinetics of substrate drugs. P-gp modulators/inhibitors/chemosensitizers are seemed to have low potency, weak effectiveness, and poor selectivity, and would have to be given chronically at high doses to block transporter function effectively in human which bears an increased risk of severe side effects. Owing to these complications, no transporter inhibitors are currently in clinical use to improve brain delivery of anti-psychotic for treatment-resistant schizophrenia. In general, the functional significance of P-gp efflux transporters as drug carriers are constantly increasing in current medical practice and as they represent a key factor in clinical outcome. However, direct evidence for a major role of P-gp in pharmacokinetics has been lacking, and thus requires further standardized research in future in particular in tackling pharmaco-resistant schizophrenia.