我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

The Use of Biophysical Proteomic Techniques

Mary Lynn

The application of proteomic methods to the study of diseases is growing at an ever-increasing rate, and it has begun to fill in significant knowledge gaps regarding the etiology of disease and the development of efficient methods for the early detection and treatment of diseases. Mass spectrometry and protein separation methods like two-dimensional gel electrophoresis and liquid chromatography are examples of biophysical techniques that are an essential component of the advanced proteomic methods that are currently in use. Determining altered protein expression not only at the whole-cell or tissue levels, but also in subcellular structures, protein complexes, and biological fluids is one way that biophysical proteomic methods can be used to study disease. Additionally, these methods are being used to discover novel disease biomarkers, investigate disease pathogenesis, develop novel diagnostic methods, and identify novel therapeutic targets. Through more efficient methods for assessing a drug's therapeutic effects and toxicity, proteomic methods also have the potential to accelerate drug development. In order for biophysical proteomic methods to be more widely accepted and have a greater impact, this article discusses how they can be used to identify cardiovascular disease and other diseases, as well as their limitations and potential future research directions [1, 2].