国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Tree Species Discrimination using Narrow Bands and Vegetation Indicesfrom Airborne Aisa Eagle Vnir Data in the Taita Hills, Kenya

Samuel Nthuni1*, Janne Heiskanen2, Faith Karanja1, Mika Siljander2 and Petri Pellikka2

Tree species inventory and mapping are important for the management and conservation of forests. Especially in tropical forests, field based inventories are very tedious and time consuming. Therefore, the crown-level spectral data collected by the high spatial resolution airborne imaging spectroscopy provides promising possibilities for improving the accuracy and efficiency of tree species inventory and mapping. In this study, the feasibility of AISA Eagle VNIR data for spectral discrimination of indigenous and exotic tree species in the Ngangao forest in the Taita Hills in south-eastern Kenya was examined. The airborne AISA Eagle VNIR data (400-876 nm, bandwidth approximately 4.6 nm) was acquired in January 2013. The data was georeferenced and atmospherically corrected with a final spatial resolution of 1 m. The field data consisted of 152 samples from 10 species (six indigenous and four exotic species), which were mapped both in the field and from the AISA images. Stepwise Discriminant Analysis was used for tree species classification using three sets of inputs: (1) all narrowbands, (2) a combination of narrowbands and selected vegetation indices (VIs), and (3) simulated blue, green, red and NIR broadbands. According to the results, both the narrowbands and VIs provided a cross-validated overall accuracy of 77.0%. The simulated broadbands provided considerably lower overall accuracy of 38.2%, which emphasizes the utility of hyperspectral data in tropical tree species discrimination. High overall accuracy (92.8%) was attained when separating only exotic and indigenous species.