国际标准期刊号: ISSN:2167-7964

放射学组学杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 研究圣经
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • ICMJE
分享此页面

抽象的

Ultrashort TE (UTE) Imaging of the Knee Cartilage at 3T

Song Gao, Shanglian Bao, Christine B Chung, Graeme M Bydder and Jiang Du

While MR imaging has emerged as the imaging method of choice for diagnosis of cartilage disease, the deep radial and calcified layers of cartilage are difficult to image with conventional MRI because of their short T2 relaxation times. The imaging of cartilage injury and osteoarthritis (OA) has therefore focused on the superficial layers of cartilage. We describe herein the implementation of Ultrashort Echo Time (UTE) pulse sequences with Echo Times (TEs) as low as 8 μs on a clinical 3T scanner. Various adaptations were made to the regular UTE acquisition in order to optimize image contrast between the deep layers and superficial layers of cartilage. These modifications included multiple gradient echo UTE acquisition with and without fat saturation, and multiple spin echo UTE acquisition. The efficacy of these techniques in depicting the targeted tissues was demonstrated through imaging of cadaveric samples and healthy volunteers. Excellent depiction of these different regions was obtained, enhanced particularly with fat suppression and later echo subtraction methods. Quantitative measurements showed that while UTE Free Induction Decay (FID) acquisition provided the highest signal-to-noise ratio, both fat suppression and later echo subtraction enhanced the contrast between the deep and superficial layers of cartilage.