国际标准期刊号: 2167-065X

临床药理学与生物药剂学

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Understanding the Pharmacological Mechanisms of Antidepressants

Joshua Wiedermann

Pharmacological research aimed at revolutionizing drug delivery methods through the utilization of nanotechnology. This emerging field holds immense potential for enhancing therapeutic outcomes, minimizing side effects, and optimizing treatment regimens. Nanotechnology involves manipulating materials at the nanoscale, typically between 1 and 100 nanometers, to create innovative drug delivery systems. One significant area of focus within this field is the development of nanocarriers, such as liposomes, polymeric nanoparticles, and Dendrimers, which can encapsulate drugs and transport them to target sites with enhanced precision. These Nano carriers offer several advantages, including increased drug stability, prolonged circulation time, and improved bioavailability. Furthermore, their ability to passively or actively target specific tissues or cells can significantly enhance drug accumulation at the desired site, while minimizing exposure to healthy tissues.

Moreover, researchers are exploring the integration of stimuli-responsive nanomaterials that can release drugs in response to specific triggers, such as changes in pH, temperature, or the presence of certain enzymes. This "smart" drug delivery approach holds great promise for achieving controlled and on-demand drug release, thereby improving therapeutic efficacy and reducing the frequency of administration. Additionally, nanotechnology-based drug delivery systems are being designed to overcome biological barriers, such as the blood-brain barrier, which restricts the entry of therapeutic agents into the central nervous system. By leveraging nanoscale carriers, researchers are exploring strategies to enhance drug penetration and deliver treatments for neurological disorders more effectively.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。