开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Pérez Alvarez MC, Delgado GarcÃa-Menocal JA, Almirall La Serna, Alfonso HA, Collins J, Fernández Díaz MI, Márquez AD, Rodríguez Hernandez JA, Rodríguez CO, Somonte Dávila H, Guerra Bretaña RM and Morejón AL
In maxillary bone, several pathologies or lesions may cause maxillary alveolar atrophic (MAA), that is, a bone reabsorption frequently provoked by tooth loses or extractions. Tooth loses or extractions are one of the most common clinical situations observed in patients. The MAA could become a signifi cant functional and aesthetic risk for the use of tooth implants or any other prosthetic rehabilitation. Several biomaterials have been used as bone graft; they must fulfi l requirements like biocompatibility and a suitable function. A synthetic dense ceramic granulate of β-TCP, BIOGRAFT-G® (BIOMAT), in form of irregular shape granules with a grain size between 0.1 mm and 0.4 mm, was used in this study as graft material. The clinical studies include 178 patients, treated in Pre-implantology and Trans-implantology bone remodelling, prevention of residual ridge reabsorption by socket grafting and Periapical Surgical. In the fi nal evaluation of effectiveness after 6 month of surgery most of cases were qualifi ed as Success (98.3%), observing in the treated site a remodeled bone similar to the one in the adjacent tissue and almost no trace of implanted biomaterial. However, 3 cases were qualifi ed as Failure, all of them in patients that underwent the fi lling of dental sockets treatment, caused by the exfoliation of granules or a septic process. According to the obtained results, Biograft-G® proved to be a biodegradable, biocompatible, effectiveness and safety bone graft biomaterial in the studied treatments.