国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Using Principle Component Analysis in Identifying Synoptic Patterns of Wet Periods in Central Iran

Mehran Fatemi*, Kamal Omidvar, Khodakaram Hatami Bahman Beiglou and Mahdi Narangifard

Atmosphere circulation patterns have an important role in appearance of natural events. For this purpose, in the present study in order to identify the atmosphere circulation patterns which cause humid periods, the principle components analysis method and cluster analysis were used. Therefore by emphasis on peripheral circulation approach, wet periods during a 30 years statistic period (1982-2011) in 6 synoptic stations in Kerman, Yazd and Isfahan province which have long term common statistic period were calculated using standard precipitation index. The findings of principle component analysis showed that by eight components it is possible to explain 94 percent of the variations in geo-potential height data. Therefore, the first component with 62.3 percent appearance shows the dominance of polar and Siberia high pressure in cold period of the year, and the remaining components show atmosphere instabilities which penetrate the region from Mediterranean sea, Black sea and Red sea. The results of cluster inspections show that there are two patterns with 28 percent frequency and 15 percent probability of precipitation in the region. Therefore, the circulation pattern of middle level of the atmosphere shows that by establishment of a deep trough at the east of Mediterranean sea and red sea and locating the east of trough on the researched area, and simultaneously a low pressure centre become dominant at the sea level on the region which cause precipitation event. This arrangement of circulation pattern causes Iran to exit from drought.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。