我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Using Thermal Strain to Create a Magnetically Graded Material In-Situ

Felicity Freeman

A key differentiator for additive manufacturing is spatially resolved functional grading, which enables a level of control not possible with conventional methods. Utilizing the solid-state austenite-martensite phase transformation, we create an in-situ microstructurally and magnetically graded single-composition material by utilizing the rapid solidification and thermal strain associated with selective laser melting. The thermal martensite start temperature is lowered by the fine grain sizes produced by high cooling rates, thereby increasing the proportion of retained austenite. Then, martensitic transformation driven by in-situ deformation is caused by the thermal strain that was added during the construction. We have been able to control the final ratio of austenite to martensite by controlling the thermal strain and the build parameters and geometry. Partially austenitic regions exhibit paramagnetic behavior, whereas dual-phase regions with an increasing proportion of martensite exhibit ferromagnetic behavior. This enables us to construct a magnetically graded rotor that is successfully utilized in a synchronous motor.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。