国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Virtual Simulation of High Impact Shovel Loading Operation for Optimum Dumping Characterization

Ali D and Frimpong S*

The use of large machinery in surface mining operations has resulted in high-impact shovel loading operations (HISLO). When large capacity shovels dump 100+ tons of loads in a single pass, large impact forces are generated resulting in high frequency shock waves. These shock waves cause severe truck vibrations, and thus, expose dump truck operators to high levels of whole body vibrations (WBV) and impact the health and safety of operators. The operator’s lower torso, lower back, legs, feet and hands are exposed to these WBV levels, which ultimately result in lower back injuries, musculoskeletal diseases and other long-term injuries. There exists no fundamental work to address this problem except a rigorous mathematical model for this impact force developed by previous researchers. This paper outlines a pioneering effort to develop a 3D virtual simulation model for a shovel dumping operation using DEM techniques in PFC3D. The model captures material dumping from a P&H 4100XPC shovel into a CAT 793D truck. Analysis of the simulation results showed that a per cent reduction of 4.88, 7.42, 11.45, 12.01, 15.08 and 17.34% can be achieved by reducing the dumping height from 7.33 m to 6.33, 6.00, 5.50, 5.33, 5.00 and 4.9 m, respectively. As a result of the cushioning effect, the reduction in the impact force magnitude ranges between 8.2% and 10.5%. This simulation model can be used to analyse any HISLO operation to reduce or possibly eliminate WBV exposures by optimizing the shovel dumping height to reduce the impact force.