国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Vitamin C containing xanthan-gelatin based hydrogels for wound dressing applications

Gizem Cigdem Demir

Gelatin has been widely used in tissue scaffolds due to its excellent biocompatibility, low antigen property, controllable biodegradability, hemostatic property and ability to stimulate cell adhesion/ growth. In literature, xanthan, a water-soluble natural gum produced by fermentation of sugar, is used as adjuvant hydrogel in tissue engineering as well as drug delivery applications. In this study, the potential of vitamin C containing oxidized xanthan (OX) and gelatin (GEL) composite hydrogels of different OX:GEL ratios was investigated as a wound dressing for the first time in the literature. Borax, a non-toxic, inexpensive and readily available cross-linker were used for preparing the composite hydrogels. Also, CaCl2 was used as a crosslinker alongside borax to increase the degree of crosslinking and to make hydrogel durable for treatment time. Initially, concentration of crosslinkers ,boraks (Bo): CaCl2 (Ca), then ratio of OX:Gelatin (1:3, 2:3, 1:1 wt:wt) was optimized. Among groups with different crosslinker ratios (2Bo:1Ca, 1Bo:2Ca and 1Bo:1Ca wt:wt), the hydrogel crosslinked with 2Bo:1Ca wt:wt ratio had the highest structural stability. Vitamin C was used to improve skin regeneration and due to its antioxidant properties. Hydrogel groups with different OX:Gelatin ratios (1:3, 2:3, 1:1 wt:wt) were compared through study. In vitro studies were conducted with fibroblast (L929) cell line. Cell proliferation was highest on OX:Gelatin(1:3 wt:wt) hydrogel. In order to solve the problems encountered in the current dressing applications; Physicochemical, mechanical and in vitro biocompatibility properties of composite hydrogels containing vitamin C are under investigation. The authors acknowledge METU BIOMATEN for financial support and laboratory facilities.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。