开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Dileep Pathote1* Dheeraj Jaiswal2, Vikrant Singh3, C.K Behera4
Austenitic stainless steel like 316L is well known for its specific properties as resistance to corrosion, compatibility as biomaterials, and minimum wear loss tendency. As a biomaterial with properties, it doesn't elicit an adverse response while placed in the service. The combination of synergistic mechanical (wear) and chemical (Corrosion) is termed as corrosion wear mechanism. The removal of the passive layer during the sliding contact results in wear or when the galvanic attacks of subtracting results in blistering of coating, say corrosion. The entire spectrum of local and systematic findings related to metal implants is incorporated concerning an adverse reaction to metal debris. 316L stainless steel implant in a human body is enormously restoring successfully, gratification, and mobility to a mass of individuals every year. This review article analyzed in detail with reference to the possible corrosion and wore effect of 316L stainless steel on biocompatibility.