国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

What Animal Models of Parkinsonism Tell us About the Distinct Nicotinic Acetylcholine Receptors Involved in Pathogenesis?

Yuri N Utkin, Elena V Kryukova and Victor I Tsetlin

A prominent degeneration of dopaminergic (DA-ergic) neurons in basal ganglia (striatum and substantia nigra) and a profound loss of dopamine resulting in patient motor dysfunctions are the main characteristics of Parkinson’s disease (PD). The data available indicate a substantial role of nicotinic acetylcholine receptors (nAChR) in molecular mechanisms underlying PD. nAChRs belong to the superfamily of ligand-gated ion channels, their pharmacological profile being determined by an array of subunits forming a distinct receptor subtype. Acetylcholine modulates dopamine release via an interaction with multiple nAChRs subtypes present on the nigrosriatal neurons. This suggests nAChRs as possible targets in the treatment of PD, however the knowledge of subunit composition is necessary for effective drug design. As studies in humans are quite limited, animal models are broadly used for these purposes. For creating experimental Parkinsonism models, low molecular weight toxic organic compounds are commonly used. 1-Methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), 1,1’-Dimethyl-4-4’-bypiridinium dichloride (paraquat), pesticide rotenone and ubiquitin proteasome system inhibitors, such as lactacystin and epoxomicin, can be mentioned as applied more often. Both mammalian and non-mammalian animals are used as model organisms, rodent and non-human primates being used mainly as mammalian models. This review summarizes the data obtained on toxic animal models about the involvement of different nAChR subtypes in PD at different stages. The present data suggest that degeneration of nigrostriatal DA-ergic neurons in the animal PD models is accompanied by alterations in the expression level and functional activity of different nAChR subtypes. Both heterooligomeric α6- and/or α4-containing and α7 homooligomeric subtypes are affected and can be regarded as possible targets for intervention.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。