国际标准期刊号: 2375-4338

水稻研究:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • 学术钥匙
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Chitin Elicitor-Responsive Photon Emission is potentiated by Plant Activators through Priming of Salicylic Acid Signaling via OsWRKY45 in Rice

Hiroyuki Iyozumi*, Hideki Nukui and Kimihiko Kato

Priming of plant cells for faster and enhanced defense responses against pathogen attacks is a common feature of chemically or biologically induced resistance. The authors previously developed a priming detection system that detects priming as potentiation of chitin elicitor-responsive photon emission (C-ERPE) in rice cells pretreated with various types of chemical inducers of disease resistance, called plant activators. To elucidate the mechanisms underlying C-ERPE potentiation, the authors performed gene knockdown of OsWRKY45, a major regulator of salicylic acid (SA)-dependent defense responses in rice, and estimated the effects of SA isomers on C-ERPE potentiation. Plant activators induced a 200-300% increase in C-ERPE in the wild type, whereas OsWRKY45 knockdown attenuated the increase in C-ERPE to less than 60%. Native SA induced more than a 150% increase in C-ERPE, but structural isomers of SA were less effective (10-24% increase). These SA signaling-disruption experiments indicate that the potentiation of C-ERPE requires intrinsic components of hormonal signaling for defense, at least for priming by inducers of systemic acquired resistance.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。