我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

During Obesity and Diabetes, Microbiota and Receptors that Resemble Nod keep Metabolism and Inflammation in Check

Han Fang

Obesity and metabolism are intertwined factors that significantly impact human health. Obesity, characterized by excess body fat, leads to metabolic dysregulation and increases the risk of chronic diseases, such as type 2 diabetes and cardiovascular disorders. Metabolism encompasses the complex set of chemical processes that convert food into energy and other essential substances within the body. Understanding the relationship between obesity and metabolism is crucial for unraveling the underlying mechanisms contributing to weight gain and its impact on overall health. Metabolic alterations observed in obesity include insulin resistance, dyslipidemia, and chronic inflammation.Adipose tissue, hormonal regulation, and the gut microbiota play pivotal roles in energy balance, appetite regulation, and metabolic homeostasis. Genetic factors influence obesity and metabolism, with numerous genes identified through genome-wide association studies. Lifestyle modifications, including diet and exercise, are crucial for managing obesity and improving metabolic health. Further research is needed to explore epigenetics, the gut-brain axis, and environmental influences. Addressing the obesity epidemic and promoting metabolic health require a multidisciplinary approach involving healthcare professionals, policymakers, and individuals themselves. By promoting healthy lifestyle habits and personalized interventions, we can mitigate the impact of obesity on individuals and societies, leading to improved health outcomes.

During obesity, the host’s metabolism and immunity are affected by the gut microbiota. The innate immune system’s bacterial sensors transmit signals from specific bacterial components, or postbiotics, that may have opposing effects on metabolic inflammation in the host. Although they both recruit receptor-interacting protein kinase 2 (RIPK2), NOD-like receptors (NLRs) like Nod1 and Nod2 have distinct effects on blood glucose control. Nod1 links metabolic inflammation and insulin resistance to signals from the bacterial cell wall, whereas Nod2 can boost immune tolerance, insulin sensitivity, and better control of blood glucose during obesity. Inflammasomes that contain a pyrin domain belonging to the NLR family (NLRP) can also produce distinct metabolic outcomes. NLRP3 appears to have a bias toward IL- 1-mediated metabolic inflammation and insulin resistance, whereas NLRP1 protects against obesity and metabolic inflammation possibly due to a bias toward IL-18 regulation.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。