开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Arun G Ingale
Dengue is one of the most imperative emerging vector-borne viral diseases. A foremost hitch in designing vaccine for the dengue virus has been the high antigenic variability in the envelope protein of different virus strains. To foster operational vaccines it is essential to target multiple antigenic components of the virus, thus focusing the immune system to protect the host from the virus. Consequently, it is essential to study the structural and functional features of this DENV3 envelope protein in the stoppage of the disease. The purpose of this study was in silico structural characterization of DENV3 envelope protein and to predict their antigenic determinants. This endeavor represents the first structural and epitopes prediction study of DENV3 envelope protein of Indian origin. Computational analyses were performed and a homology model of DENV3 envelope protein was generated. The quality of the model was evaluated by PROCHECK, VERRIFY-3D, PROSA and Errat. Results indicate that 89.88% overall quality of predicted model with a -4.67 Z-score. The model structure was finally submitted in Protein Model Database. The results of MetaPocket server predicted the binding sites, which are good and helpful for docking purpose. The analysis revealed trustworthy conformational B-cell and CTL epitopes that can promote the desired immune response against dengue virus. This information may also help in designing vaccine against dengue in deficiency of experimentally resolved structures.