国际标准期刊号: 2278-0238

国际药学与生命科学研究与发展杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

FORMULATION AND EVALUATION OF FAST DISINTEGRATING LOSARTAN POTASSIUM TABLETS BY FORMAL EXPERIMENTAL DESIGN

Birajdar Shivprasad M, Bhusnure Omprakash G., Mulaje Suraj S.

In the treatment of hypertension fast onset of action is the major concern. The problem of slow onset of action of drugs can be overcome by development of appropriate dosage forms. Fast disintegrating tablets in mouth are best suited and have gained popularity in the oral antihypertensive drug therapy. These are advantageous over other conventional systems in terms of patient compliance, rapid onset of action, accurate dosing, good chemical stability, convenience of selfadministration and compactness. Losartan potassium is widely used as an antihypertensive drug, which is a potent drug candidate for developing in to Fast Dissolving Tablets (FDT’s). It has low bioavailability due to first pass metabolism. Hence the main objective of the study was to formulate fast dissolving tablets of Losartan potassium to achieve a better dissolution rate and further improving the bioavailability of the drug. Fast dissolving tablet of Losartan potassium were formulated by using microcrystalline cellulose with different concentration of superdisintegrants like sodium starch glycolate and Isabgol Mucilage. All the batches were prepared by direct compression. API characterization studies were conducted to check the purity of API .The tablets were evaluated for Pre compression parameters and post compression parameters. Before the formulation of the tablets IR spectroscopic studies were also performed to check the compatibility with the excipients. A 23 full factorial design was applied to investigate the combine effect of 3 formulation variables. Here the concentration of Isabgol mucilage, concentration of Sodium Starch Glycolate and concentration of Microcrystalline Cellulose were taken as independent variable X1, X2 & X3 respectively and their effect of disintegration time is studied as dependent parameter. To represent the data Design Expert software is used.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。