我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

From Arabidopsis to crops: a molecular tool to increase protein content and broad disease resistance

Ling Li

Crop plants must integrate signals from the environment and prioritize responses to stresses that may occur individually or simultaneously throughout the growing season. Stress responses can adversely affect plant growth and quality traits such as protein and starch. The ability to optimize protein productivity of plant-based foods has a far-ranging impact on world health and sustainability. Plant diseases each year cause major losses to crop production. The Arabidopsis thaliana QQS (Qua Quine Starch) orphan gene modulates carbon allocation to protein and starch. Ectopic QQS expression increases protein content2 in leaf and seed in soybean, in corn and rice. QQS transcript levels are altered in plants under stresses and in mutants of genes involved in all sorts of stress responses, indicating that QQS may integrate primary metabolism with environmental perturbations, thus adjusting the plant’s adaption to abiotic and biotic stresses. The QQS protein binds to a transcriptional regulator in Arabidopsis and its homologs in crops: Nuclear Factor Y subunit C4 (NF-YC4). NF-YC4 overexpression mimics QQS-overexpression phenotype.