国际标准期刊号: 2168-9652

生物化学与生理学:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Major Contributors to Nitrogen Gas Plasma Sterilization

H Shintani

Many papers have been published on gas plasma sterilization. Most have been conducted by engineers and physics researchers, so microbiological and chemical aspects are insufficient or inaccurate. Gas plasma sterilization research has significantly advanced since 2008 when biologists and chemists began contributing their expertise to the effort. However, the mechanism of sterilization by gas plasma has not yet been elucidated. Based on their life spans and other characteristics, metastables and/or photons can speculated to be the most likely candidates contributing to the mechanism of gas plasma sterilization. OH and/or NO radicals may be minor contributors due to significant short period of life. Spore death can be explained by the hydration of dipicolinic acid (DPA) in the spore core. The energy of metastables and/or photons can cause the formation of pin holes in spores that allow water to penetrate into the core and hydrate the DPA. Hydrated DPA transfers to the spore surface. DPA in the spore surface was collected by extraction with water and enriched by solid phase extraction. Eluted material was vaporized, condensed, and analyzed by the reverse phase C-18 HPLC. Elution from the C-18 column was carried out with acetonitrile/water (1/4, v/v, pH 5) and detected at 235 nm and by mass spectrometry (MS). Based on a comparison of the retention time and MS fragmentation pattern with that of standard DPA, the spore surface particles were confirmed to be composed of DPA. The hydration process occurred within the spore and did not cause any structural change within the spore. Therefore the structure of spores remained almost unchanged after sterilization.