国际标准期刊号: 2375-4338

水稻研究:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • 学术钥匙
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Morpho-Physiological Responses and Nutrient Profile of Rice Cultivars to Salinity

Mohammad Reza Siahpoosh and Masomeh Ghamer

Salinity is one of the main obstacles in increasing rice production worldwide. Even though rice is considered to be a salt-sensitive or moderately sensitive crop, the development of salt tolerant cultivars is essential to coping with the simultaneous increases in global population and salinization in arid and semi-arid areas. Over the course of the project, 5 rice cultivars from two subspecies (Indica and Japonica) were exposed to salt doses (0, 50 and 100 mM, NaCl) in several independent experiments. The experiments were carried out in high light growth chambers beginning with young plantlets at the three-leaf stage grown hydroponically. The plants were characterized based on morpho-physiological traits and ions profile under salinity treatments. Morpho-physiological evaluation of cultivars after exposure to salinity showed marked variability in response to salinity. The growth retardation response of japonica cultivars to salinity was much greater than that of indica cultivars. Reduction in the root:shoot ratio of plants under salt stress was a common behavior among the cultivars. The chlorophyll fluorescent quantum yield and electrolyte leakage of cultivars decreased and increased respectively after exposure to salinity. The nutrient profile of cultivars under salt stress revealed that the tolerant cultivars exhibit significantly higher K/Na ratios in their leaves than sensitive cultivars. Boron, copper and sulphur didn’t change significantly. The contents of cadmium, cobalt, chromium, nickel and selenium in rice cultivars were below the detection limits. Moreover, salinity in high doses makes molybdenum deficiency the same as iron deficiency in rice plants.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。