国际标准期刊号: 2278-0238

国际药学与生命科学研究与发展杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Nanomedicine for the diagnosis, prevention, and treatment of wide-ranging clinical conditions

Thomas J. Webster

Problem Statement: Medical conditions that are fully or partially irremediable, and which have the potential to leave patients permanently debilitated, are prevalent, despite the wide clinical availability of therapeutics, drugs, and diagnostic tools. Major contemporary health and well-being risks are onset by a slew of causative agents, including antibiotic-resistant microorganisms that prompt facilely transmissible infectious diseases; inherited genetic disorders or mutations that maximize the likelihood of certain cancers in affected individuals; and traumatic injuries that result in lifelong localized pain, disfigurement, or surgical intervention. Methodology: Nanotechnological solutions are dependent on the manipulation of elementary constituents to produce particles or features with dimensions on the order of 100 nm or less, from extremity-to-extremity, and which display optimal quantum effects and enhanced surface area to volume ratios. Facile synthesis approaches, including nanoparticle self-assembly, hydrothermal production, and biogenic methods, have been adapted to achieve these nanodimensions in medical systems. Findings: Unique nanoparticle physiochemical properties, pertaining to size, morphology, and electronic responsiveness contribute to biomolecular impairment and ATP depletion in antagonistic cell types. For instance, noble metal and metal oxide nanoparticles have demonstrated anti-bacterial and anti-cancer efficacy following their application within in vitro and in vivo environments. Targeted delivery has been successfully approached through the synthesis of nanocarriers loaded with various drugs, proteins, genetic materials, and fluorescent probes. Nanofibrous or nanofeatured orthopedic scaffolds with optimal surface energies and mechanical properties have aided in implant optimization. Conclusions: Advances in nanotechnology will produce an index of safe and versatile treatments that functionally exceed current regimens, or that warrant clinical solutions to otherwise untreatable medical complications or conditions.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。