国际标准期刊号: 2168-9652

生物化学与生理学:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Physiological Role of Endocannabinoid-Hydrolyzing Enzymes in Brain Development and Neurodegeneration

Zen Kouchi

Endocannabinoids (eCBs) such as 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (AEA) are important lipophilic mediators for transducing in signals organizing neuronal wiring in brain development, tuning retrograde signaling during synaptic transmission, or regulating neuroinflammation. e-CB hydrolyzing enzymes such as monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are key enzymes that integrate with the eCB receptors (CBR) in a distinct or cooperative manner for signaling in these diverse processes. Recently, MAGL and α/β hydrolase domain-containing protein 6 (ABHD6) have been highlighted as the primary brain 2-AG hydrolases, categorized as Ser hydrolase with a unique α/β-hydrolase fold, although FAAH preferentially hydrolyzes AEA. Brain MAGL was originally noticed as an enzyme involved in the modulation of synaptic retrograde signaling through termination of eCBR signaling by 2-AG hydrolysis, but recent elegant studies have revealed new aspects of its function in the generation of arachidonoic acid (AA) or other molecular signals that induce neuroinflammation. ABHD6 is important for 2-AG homeostasis and controls synaptic plasticity by downregulating 2-AG accumulation and efficacy at CBRs or the GABAA receptor. ABHD12 has recently been reported to hydrolyze lysophosphatidylserine in vivo, and ABHD12 knockout mice exhibit a neurologic phenotype similar to that of patients possessing inborn mutation in ABHD12, leading to the neurodegenerative disease PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, and cataract). Here we review the recent progress in understanding the mechanisms underlying CBR signaling and e-CB hydrolyzing enzymes from a physiological aspect, with emergence of attractive avenues as therapeutic targets for several neurodegenerative diseases.