国际标准期刊号: 2375-4338

水稻研究:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • 学术钥匙
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Response of Rice under Salinity Stress: A Review Update

Bhaswati Ghosh, Nasim Ali Md and Saikat Gantait

Salinity has been a key abiotic constraint devastating crop production worldwide. Attempts in understanding salt tolerance mechanisms has revealed several key enzymes and altered biochemical pathways inferring resistance to crop plants against salt stress. The past decades have witnessed extensive research in development of salt tolerant cultivars via conventional means, improvised by modern era molecular tools and techniques. Rice (Oryza sativa L) is the staple food crop across several countries worldwide. Being a glycophyte by nature, its growth is severely imparted in presence of excess salt. Rice is susceptible to salinity specifically at the early vegetative and later reproductive stages and the response of the crop to excessive salt toxicity at biochemical and molecular level as well as physiological level is well studied and documented. An understanding of the specific response of rice to ion accumulation at the toxic level can aid in identifying the key factors responsible for retarded growth and limited production of rice with the future scope of mitigating the same. The present review summarizes the differential responses of rice, in particular, to salt toxicity enumerating the detailed morphological, physiological, biochemical and molecular changes occurring in the plant. An attempt to explain salinity tolerance and its future scope and implications in screening for salt tolerance has also been elucidated in the present study.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。