我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Self Sustained Renewable Energy Generator

Alex Thomas*

Describes a method for self sustained generation of renewable energy by use of a piezo electric crystal actuator. Piezo electric crystal generates rather minute amounts of energy when deformed by force. The usable energy obtained by such actuation varies based on crystal size, applied force, but for an average size and for moderate applied force, could be about 90 micro joules. In order to collect reasonable energy for practically viable application, tens of millions of such actuation needs to be performed each second on a continuous basis.

Safely assuming only about 60 micro-joules energy for power output calculations, about ten million actuation per second will produce 600 joules of energy per second. The actuator consumes power, and achieves selfsustenance when the electrical energy produced by the actuator exceeds its own consumption requirements. As per calculations shown in detail section, it exceeds this threshold comfortably at twenty million actuations per second. The actuator is theoretically shown to be capable of over hundred million actuations per second, making available about 5K watts of excess energy for export, For a ten-fold power output increase, it can be safely observed that the actuator drive input energy demand increase is limited to less than threefold. Unlike most other forms of energy generation, where input energy is the motive energy, and the maximum output cannot exceed input energy minus all losses, here the input energy serves to subject the crystals to the motive force, and therefore does not share the same input-output relationship, and therefore makes possible its self-sustenance, a concept considered impossible in reality. As this is against the present accepted norms of science, the model and calculations are published, for a broader expert review and assessment to identify its viability.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。